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Abstract

While being the de facto standard coordinate representa-
tion for human pose estimation, heatmap has not been inves-
tigated in-depth. This work fills this gap. For the first time,
we find that the process of decoding the predicted heatmaps
into the final joint coordinates in the original image space
is surprisingly significant for the performance. We further
probe the design limitations of the standard coordinate de-
coding method, and propose a more principled distribution-
aware decoding method. Also, we improve the standard co-
ordinate encoding process (i.e. transforming ground-truth
coordinates to heatmaps) by generating unbiased/accurate
heatmaps. Taking the two together, we formulate a novel
Distribution-Aware coordinate Representation of Keypoints
(DARK) method. Serving as a model-agnostic plug-in,
DARK brings about significant performance boost to exist-
ing human pose estimation models. Extensive experiments
show that DARK yields the best results on two common
benchmarks, MPII and COCO. Besides, DARK achieves the
2" place entry in the ICCV 2019 COCO Keypoints Chal-
lenge. The code is available online [36].

1. Introduction

Human pose estimation is a fundamental computer vi-
sion problem that aims to detect the spatial location (i.e. co-
ordinate) of human body joints in unconstrained images [1].
It is a non-trivial task as the appearance of body joints vary
dramatically due to diverse styles of clothes, arbitrary oc-
clusion, and unconstrained background contexts, whilst it
is needed to identify the fine-grained joint coordinates. As
strong image processing models, convolutional neural net-
works (CNNs) excel at this task [15]. Existing works typi-
cally focus on designing the CNN architecture tailored par-
ticularly for human pose inference [20, 25].

Analogous to the common one-hot vectors as the object

(a) Data Preprocessing

Ground-Truth
. Heatmaps
s Resolution

s ‘ ‘ Reduction s

Input Image

Source Image

(b) Human Pose Estimation Model | (c) Model Training
. Ground-Truth
,5% Heatmaps
S
‘ =) -‘ (d) Model Testing
Input Predicted
Recove:

Image Heatmaps
Original Image Space

Figure 1. Pipeline of a human pose estimation system. For effi-
ciency, resolution reduction is often applied on the original person
detection bounding boxes as well as the ground-truth heatmap su-
pervision. So, the model operates in a low-resolution image space
which reduces model inference cost significantly. At test time,
a corresponding resolution recovery is therefore necessary in or-
der to obtain the joint coordinate prediction in the original image
space.

class label representation in image classification, a human
pose CNN model also requires a label representation for
encoding the body joint coordinate labels, so that the su-
pervised learning loss can be quantified and computed dur-
ing training and the joint coordinates can be inferred prop-
erly!. The de facto standard label representation is coordi-

'The label representation is for encoding the label annotations
(e.g. 1,000 one-hot vectors for 1,000 object class labels in ImageNet), to-
tally different from the data representation for encoding the data samples
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nate heatmap, generated as a 2-dimensional Gaussian dis-
tribution/kernel centred at the labelled coordinate of each
joint [30]. It is obtained from a coordinate encoding pro-
cess, from coordinate to heatmap. Heatmap is characterised
by giving spatial support around the ground-truth location,
considering not only the contextual clues but also the inher-
ent target position ambiguity. Importantly, this may effec-
tively reduce the model overfitting risk in training, in a sim-
ilar spirit of the class label smoothing regularisation [28].
The state-of-the-art pose methods [20, 33, 25, 38] are based
on the heatmap coordinate representation.

With the heatmap label representation, one major obsta-
cle is that, the computational cost is a quadratic function
of the input image resolution, preventing the CNN models
from processing the typically high-resolution raw imagery
data. To be computationally affordable, a standard strategy
(see Fig. 1) is to downsample all the person bounding box
images at arbitrarily large resolutions into a prefixed small
resolution with a data preprocessing procedure, before be-
ing fed into a human pose estimation model. Aiming to
predict the joint location in the original image coordinate
space, after the heatmap prediction a corresponding resolu-
tion recovery is required for transforming back to the orig-
inal coordinate space. The final prediction is considered
as the location with the maximal activation. We call this
process as coordinate decoding, from heatmap to coordi-
nate. It is worthy noting that quantisation error can be in-
troduced during the above resolution reduction. To alleviate
this problem, during the existing coordinate decoding pro-
cess a hand-crafted shifting operation is usually performed
according to the direction from the highest activation to the
second highest activation [20].

Despite being indispensable in model inference, the
problem of coordinate encoding and decoding (i.e. denoted
as coordinate representation) gains little attention. In con-
trast to the current research focus on designing more effec-
tive CNN structures, we reveal a surprisingly important role
the coordinate representation plays on the model perfor-
mance, much more significant than expected. For instance,
with the state-of-the-art model HRNet-W32 [25], the afore-
mentioned shifting operation of coordinate encoding brings
as high as 5.7% AP on the challenging COCO validation
set (Table 1). It is noteworthy to mention that, this gain is
already much more significant than those by most individ-
ual art methods. But it is never well noticed and carefully
investigated in the literature to our best knowledge.

Contrary to the existing human pose estimation studies,
in this work we dedicatedly investigate the problem of joint
coordinate representation including encoding and decoding.
Moreover, we recognise that the heatmap resolution is one
major obstacle that prevents the use of smaller input res-
olution for faster model inference. When decreasing the

(e.g. the object images from ImageNet).

input resolution from 256x 192 to 128 x96, the model per-
formance of HRNet-W32 drops significantly from 74.4%
to 66.9% on the COCO validation set, although the model
inference cost falls from 7.1x10° to 1.8x10° FLOPs.

In light of the discovered significance of coordinate rep-
resentation, we conduct in-depth investigation and recog-
nise that one key limitation lies in the coordinate decod-
ing process. Whilst existing standard shifting operation
has shown to be effective as found in this study, we pro-
pose a principled distribution-aware representation method
for more accurate joint localisation at sub-pixel accuracy.
Specifically, it is designed to comprehensively account
for the distribution information of heatmap activation via
Taylor-expansion based distribution approximation. Be-
sides, we observe that the standard method for generating
the ground-truth heatmaps suffers from quantisation errors,
leading to imprecise supervision signals and inferior model
performance. To solve this issue, we propose generating the
unbiased heatmaps allowing Gaussian kernel being centred
at sub-pixel locations.

Our contribution is that, we discover the previously un-
realised significance of coordinate representation in human
pose estimation, and propose a Distribution-Aware coordi-
nate Representation of Keypoints (DARK) method with two
key components: (1) efficient Taylor-expansion based coor-
dinate decoding, and (2) unbiased sub-pixel centred coordi-
nate encoding. Importantly, existing human pose methods
can be seamlessly benefited from DARK without any algo-
rithmic modification. Extensive experiments on two com-
mon benchmarks (MPII and COCO) show that our method
provides significant performance improvement for existing
state-of-the-art human pose estimation models [25, 33, 20],
achieving the best single model accuracy on COCO and
MPIIL. DARK favourably enables the use of smaller input
image resolutions with much smaller performance degrada-
tion, whilst dramatically boosting the model inference ef-
ficiency therefore facilitating low-latency and low-energy
applications as required in embedded Al scenarios.

2. Related Work

Generally, there are two common coordinate represen-
tation designs in human pose estimation: coordinate and
heatmap. Both are used as the regression targets in existing
methods, which will be reviewed separately in the follows.

Coordinate regression Directly taking the coordinates
as model output target is straightforward and intuitive.
But only a handful of existing methods adopt this design
[31, 10, 3, 21, 27]. One plausible reason is that, this repre-
sentation lacks the spatial and contextual information, mak-
ing the learning of human pose model extremely challeng-
ing due to the intrinsic visual ambiguity in joint location.
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Heatmap regression The heatmap representation elegantly
addresses the above limitations. It was firstly introduced
in [30] and rapidly became the most commonly used coor-
dinate representation. Generally, the mainstream research
focus is on designing network architectures for more effec-
tively regressing the heatmap supervision. Representative
design improvements include sequential modelling [12, 2],
receptive field expansion [32], position voting [16], inter-
mediate supervision [20, 32], pairwise relations modelling
[4], tree structure modelling [8, 35, 7, 26, 29], hierarchi-
cal context learning [37], pyramid residual learning [34],
cascaded pyramid learning [6], knowledge-guided learning
[22], active learning [18], adversarial learning [5], deconvo-
lution upsampling [33], multi-scale supervision [14], atten-
tional mechanism [19, 24], and high-resolution representa-
tion preserving [25].

In contrast to all previous works, we instead investigate
the issues of heatmap representation on human pose estima-
tion, a largely ignored perspective in the literature. Not only
do we reveal a big impact of resolution reduction in the pro-
cess of using heatmap but also we propose a principled co-
ordinate representation method for significantly improving
the performance of existing models. Crucially, our method
can be seamlessly integrated without model design change.

3. Methodology

We consider the coordinate representation problem in-
cluding encoding and decoding in human pose estimation.
The objective is to predict the joint coordinates in a given
input image. To that end, we need to learn a regression
model from the input image to the output coordinates, and
the heatmap is often leveraged as coordinate representation
during both model training and testing. Specifically, we as-
sume access to a training set of images. To facilitate the
model learning, we encode the labelled ground-truth coor-
dinate of a joint into a heatmap as the learning target. In
testing, we then need to decode the predicted heatmap into
the coordinate in the original image coordinate space.

In the following we first describe the decoding process,
focusing on the limitation analysis of the existing standard
method and the development of a novel solution. Then, we
further discuss and address the limitations of the encoding
process. Lastly, we describe the integration of existing hu-
man pose estimation models with the proposed method.

3.1. Coordinate Decoding

Considered seemingly as an insignificant component of
the model testing pipeline, as we will show, coordinate de-
coding turns out to be one of the most significant perfor-
mance contributors. for human pose estimation (cf. Table
1). Specifically, it is a process of translating a predicted
heatmap of each individual joint into a coordinate in the
original image space. Suppose the heatmap has the same

spatial size as the original image, we only need to find the
location of the maximal activation as the joint coordinate
prediction. However, this is often not the case as inter-
preted above. Instead, we need to upsample the heatmaps
to the original image resolution by a sample-specific un-
constrained factor A € R_.. This involves a sub-pixel local-
isation problem. Before introducing our method, we first
revisit the standard coordinate decoding method used in ex-
isting pose estimation models.

The standard coordinate decoding method is designed
empirically according to model performance [20]. Specifi-
cally, given a heatmap h predicted by a trained model, we
first identify the coordinates of the maximal (1) and second
maximal (s) activation. The joint location is then predicted
as

p=m+025 > ™ 1)
s —mll
where || - ||2 defines the magnitude of a vector. This means

that the prediction is as the maximal activation with a 0.25
pixel (i.e. sub-pixel) shifting towards the second maximal
activation in the heatmap space. The final coordinate pre-
diction in the original image is computed as:

pP=A\p )

where ) is the resolution reduction ratio.

Remarks The aim of the sub-pixel shifting in Eq. (1)
is to compensate the quantisation effect of image resolution
downsampling. That being said, the maximum activation
in the predicted heatmap does not correspond to the accu-
rate position of the joint in the original coordinate space, but
only to a coarse location. As we will show, this shifting sur-
prisingly brings a significant performance boost (Table 1).
This may partly explain why it is often used as a standard
operation in model test. Interestingly, to our best knowledge
no specific work has delved into the effect of this operation
on human pose estimation performance. Therefore, its true
significance has never been really recognised and reported
in the literature. While this standard method lacks intuition
and interpretation in design, no dedicated investigation has
been carried out for improvement. We fill this gap by pre-
senting a principled method for shifting estimation and fi-
nally more accurate human pose estimation.

Our coordinate decoding method explores the distribu-
tion structure of the predicted heatmap to infer the under-
lying maximum activation. This differs dramatically to the
standard method above relying on a hand-designed offset
prediction, with little design justification and rationale.
Specifically, to obtain the accurate location at the degree
of sub-pixel, we assume the predicted heatmap follows a 2D
Gaussian distribution, same as the ground-truth heatmap.
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Figure 2. Overview of the proposed distribution aware coordinate decoding method.

Therefore, we represent the predicted heatmap as

Gl ®) = o5 —wS e - w)
(2m)[3]2 2
(3)
where x is a pixel location in the predicted heatmap, p
is the Gaussian mean (centre) corresponding to the to-be-
estimated joint location. The covariance X is a diagonal
matrix, same as that used in coordinate encoding:
2

2=[ 5] @)
where o is the standard deviation same for both directions.
In order to reduce the approximation difficulty, we use
logarithm to transform the original exponential form G to a

quadratic form P to facilitate inference while keeping the
original maximum activation location as:

P, %) = n(0) = ~In(2m) — s (S) O

1 Ts—1
— 5@ —p) X (@ - p)
Our objective is to estimate p. As an extreme point in
the distribution, it is well-known that the first derivative at
the location @ meets a condition as:

B opT
T Oz

T=p

D' (x) = YNz —p) =0

=M T=p
(6)

To explore this condition, we adopt the Taylor’s theorem.
Formally, we approximate the activation P(u) by a Taylor
series (up to the quadratic term) evaluated at the maximal
activation m of the predicted heatmap as

! 1 1
P(p) = P(m)+D'(m)(u—m)+ 5 (p—m)" D" (m)(n—m)
@)
where D" (m) denotes the second derivative (i.e. Hessian)
of P evaluated at m, formally defined as:

D"(m) = D" (x) =-x! )

The intuition of selecting m to approximate g is that it rep-
resents a good coarse joint prediction that approaches g.
Taking Eq. (6), (7), and (8) together, we finally obtain

n=m — (D"(m))le’(m) )

where D" (m) and D’ (m) can be estimated efficiently from
the heatmap. Once obtaining p, we also apply Eq. (2) to
predict the coordinate in the original image space.

Remarks 1In contrast to the standard method consider-
ing the second maximum activation alone in heatmap, the
proposed coordinate decoding fully explores the heatmap
distributional statistics for revealing the underlying maxi-
mum more accurately. In theory, our method is based on
a principled distribution approximation under a training-
supervision-consistent assumption that the heatmap is in a
Gaussian distribution. Crucially, it is very efficient com-
putationally as it only needs to compute the first and second
derivative of one pixel location per heatmap. Consequently,
existing human pose estimation approaches can be readily
benefited without any computational cost barriers.

Heatmap distribution modulation As the proposed coordi-
nate decoding method is based on a Gaussian distribution
assumption, it is necessary for us to examine how well this
condition is satisfied. We found that, often, the heatmaps
predicted by a human pose estimation model do not exhibit
good-shaped Gaussian structure compared to the training
heatmap data. As shown in Fig. 3(a), the heatmap usu-
ally presents multiple peaks around the maximum activa-
tion. This may cause negative effects to the performance
of our decoding method. To address this issue, we propose
modulating the heatmap distribution beforehand.

Specifically, to match the requirement of our method we
propose exploiting a Gaussian kernel K with the same vari-
ation as the training data to smooth out the effects of multi-
ple peaks in the heatmap h, formally as

h=K&h (10)

where ® specifies the convolution operation.
To preserve the original heatmap’s magnitude, we finally
scale h/ so that its maximum activation is equal to that of
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Figure 3. Illustration of heatmap distribution modulation. (a) Pre-
dicted heatmap; (b) Modulated heatmap distribution.

o o= o

Figure 4. Illustration of quantisation error in the standard coordi-
nate encoding process. The blue point denotes the accurate posi-
tion (g’) of a joint. With the floor based coordinate quantisation,
an error (indicated by red arrow) is introduced. Other quantisation
methods share the same problem.

h, via the following transformation:

, _ h/ —min(h')
h= max(h’) — min(h’) * max(h) (1n

where max() and min() return the maximum and minimum
values of an input matrix, respectively. In our experimen-
tal analysis, it is validated that this distribution modulation
further improves the performance of our coordinate decod-
ing method (Table 3), with the resulting visual effect and
qualitative evaluation demonstrated in Fig. 3(b).

Summary We summarise our coordinate decoding method
in Fig. 2. Specifically, a total of three steps are involved in
a sequence: (a) Heatmap distribution modulation (Eq. (10),
(11)), (b) Distribution-aware joint localisation by Taylor ex-
pansion at sub-pixel accuracy (Eq. (3)-(9)), (¢) Resolution
recovery to the original coordinate space (Eq. (2)). None of
these steps incur high computational costs, therefore being
able to serve as an efficient plug-in for existing models.

3.2. Coordinate Encoding

The previous section has addressed the problem with co-
ordinate decoding, rooted at resolution reduction. Coor-
dinate encoding also shares the same limitation. Specifi-
cally, the standard coordinate encoding method starts with

downsampling original person images into the model input
size. So, the ground-truth joint coordinates need to be trans-
formed accordingly before generating the heatmaps.
Formally, we denote by g = (u, v) the ground-truth co-
ordinate of a joint. The resolution reduction is defined as:

g=wW)===(-,7) (12)

where ) is the downsampling ratio.
Conventionally, for facilitating the kernel generation, we
often quantise g’

u v

A’X>

g" = (u",v") = quantise(g’) = quantise(

(13)
where quantise() specifies a quantisation function, with the
common choices including floor, ceil and round.
Subsequently, the heatmap centred at the quantised co-
ordinate g” can be synthesised through:
11\2
v) ) (14)

where (x,y) specifies a pixel location in the heatmap, and
o denotes a fixed spatial variance.

Obviously, the heatmaps generated in the above way are
inaccurate and biased due to the quantisation error (Fig. 4).
This may introduce sub-optimal supervision signals and re-
sult in degraded model performance, particularly for accu-
rate coordinate encoding as proposed in this work.

To address this issue, we simply place the heatmap centre
at the non-quantised location g’ which represents the accu-
rate ground-truth coordinate. We still apply Eq. (14) but
replacing g’ with g’. We will demonstrate the benefits of
this unbiased heatmap generation method (Table 3).

_ u//)Q 4 (y _
202

1 T
9(w,y:9") = 5—3 eXP<—(

3.3. Integration with State-of-the-Art Models

DARK is model-agnostic, seamlessly integrable with
any existing heatmap based pose models. Importantly, this
does not involve any algorithmic changes to previous meth-
ods. In particular, during training the only change is the
ground-truth heatmap data generated based on the accurate
joint coordinates. At test time, we take as input the pre-
dicted heatmaps predicted by any model such as HRNet
[25], and output more accurate joint coordinates in the origi-
nal image space. In the whole lifecycle, we keep an existing
model intact as the original design. This allows to maximise
the generality and scalability of our method.

4. Experiments

Datasets We used two popular human pose estimation
datasets, COCO and MPII. The COCO keypoint dataset
[17] presents naturally challenging imagery data with var-
ious human poses, unconstrained environments, different
body scales and occlusion patterns. The entire objective
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Decoding | AP [AP[APT[APM[APF| AR

Method [ Input size [ GFLOPs | AP AP [AP™ [ APM[APL] AR

No Shifting |61.2| 88.1 | 72.3 | 59.0 | 66.3 |68.7
Standard Shifting | 66.9 | 88.7 | 76.3 | 64.6 | 72.3 |73.7
Ours 68.4| 88.6 | 77.4 | 66.0 | 74.0 |74.9

Table 1. Effect of coordinate decoding on the COCO validation
set. Model: HRNet-W32; Input size: 128 x 96.

involves both detecting person instances and localising the
body joints. It contains 200,000 images and 250,000 per-
son samples. Each person instance is labelled with 17
joints. The annotations of training and validation sets are
publicly benchmarked. In evaluation, we followed the
commonly used train2017/val2017/test-dev2017 split. The
MPII human pose dataset [1] contains 40k person sam-
ples, each labelled with 16 joints. We followed the standard
train/val/test split as in [30].

Evaluation metrics We used Object Keypoint Similar-
ity (OKS) for COCO and Percentage of Correct Keypoints
(PCK) for MPII to evaluate the model performance.

Implementation details For model training, we used the
Adam optimiser. For HRNet [25] and SimpleBaseline [33],
we followed the same learning schedule and epochs as in
the original works. For Hourglass [20], the base learning
rate was fine-tuned to 2.5e-4, and decayed to 2.5e-5 and
2.5e-6 at the 90-th and 120-th epoch. The total number of
epochs is 140. We used three different input sizes (128 x 96,
256 x 192, 384 x 288) in our experiments. We adopted the
same data preprocessing as in [25].

DM [ AP | AP [ AP™ [ AP™ [ AP | 4R
7 | 68.1]| 88.5 77.1 65.8 | 73.7 | 74.8
3 | 684 | 8.6 | 774 | 66.0 | 74.0 | 74.9

Table 2. Effect of distribution modulation (DM) on the COCO val
set. Backbone: HRNet-W32; Input size: 128 x96.

4.1. Evaluating Coordinate Representation

As the core problem in this work, the effect of coordinate
representation on model performance was firstly examined,
with a connection to the input image resolution (size). In
this test, by default we used HRNet-W32 [25] as the back-
bone model and 128 x 96 as the input size, and reported the
accuracy results on the COCO validation set.

Encode | Decode [ AP [AP[APT[APM[APL] AR
Biased |Standard|66.9| 88.7 | 76.3 | 64.6 | 72.3 |73.7
Unbiased | Standard | 68.0| 88.9 | 77.0 | 65.4 | 73.7 |74.5

Biased Ours [68.4| 88.6 | 77.4 | 66.0 | 74.0 | 74.9
Unbiased| Ours [70.7| 88.9 | 78.4 | 67.9 | 76.6 | 76.7

Table 3. Effect of coordinate encoding on the COCO validation
set. Model: HRNet-W32; Input size: 128 x 96.

FRN3Z| o T . |669] 887 | 763 | 646 | 723|737
DARK 8 1707| 889 | 78.4 | 67.9 | 76.6 |76.7
HRN32 744 905 | 81.9 | 70.8 | 81.0 |79.8
DARK | 20<192 71 a5 el 905 | 821 | 71.8 | 82.8 [80.8
HRN32 758 906 | 825 | 72.0 | 82.7 809
DARK | 3342881 160 120l 907 | 82.8 | 727 | 839 [81.5

Table 4. Effect of input image size on the COCO validation set.
DARK uses HRNet-W32 (HRN32) as backbone.

Figure 5. Examples by DARK (red) vs. HRNet-W32 (cyan).

(i) Coordinate decoding We evaluated the effect of co-
ordinate decoding, in particular, the shifting operation and
distribution modulation. The conventional biased heatmaps
were used. In this test, we compared the proposed
distribution-aware shifting method with no shifting (i.e. di-
rectly using the maximal activation location), and the stan-
dard shifting (Eq. (1)). We make two major observations
in Table 1: (i) The standard shifting gives as high as 5.7%
AP accuracy boost, which is surprisingly effective. To our
best knowledge, this is the first reported effectiveness anal-
ysis in the literature, since this problem is largely ignored
by previous studies. This reveals previously unseen sig-
nificance of coordinate decoding to human pose estima-
tion. (ii) Despite the great gain by the standard decoding
method, the proposed model further improves AP score by
1.5%, among which the distribution modulation gives 0.3%
as shown in Table 2. This validates the superiority of our
decoding method.

(i) Coordinate encoding We tested how effective coordi-
nate encoding can be. We compared the proposed unbiased
encoding with the standard biased encoding, along with
both the standard and our decoding method. We observed
from Table 3 that our unbiased encoding with accurate ker-
nel centre brings positive performance margin, regardless
of the coordinate decoding method. In particular, unbiased
encoding contributes consistently over 1% AP gain in both
cases. This suggests the importance of coordinate encoding,
which again is neglected by previous investigations.
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